

IPEI Payload

- One Ion Trap (IT).
 - To measure the total ion concentration at 32 Hz or 1024 Hz.
- A pair of Ion Drift Meters (+YDM and -YDM).
 - To measure the two cross-track ion flow velocities at 32 Hz or 1024 Hz.
- One Retarding Potential Analyzer (RPA).
 - To deduce ion composition, ion temperature and ram flow velocity at 1 or 2 Hz.

Ion Drift Meter (IDM) cross section

Retarding Potential Analyzer (RPA) cross section

Ion parameters derived from IPEI instrument

Earth-Centered Inertia (ECI) Coordinate

Spacecraft Coordinate System y: opposite to angular momentum z: toward the Earth Center x: $\hat{y} \ge \hat{z}$ direction

Measurements on the ROCSAT spacecraft coordinate.

- Ion concentration (density), N, from IT.
 - Base on spacecraft velocity of 7.545 km/s.
- V_y and V_z flow components from +YDM and -YDM.
 - Use 7.545 km/s to convert flow velocity from measured deflection angle.
 - Measured V_y contains the Earth rotation induced corotation flow velocity.
- V_x (ram velocity) from RPA.

Co-rotation velociy

$$v_{y}^{cor} = \pm \omega_{\oplus} r (\cos^{2} L - \cos^{2} i)^{\frac{1}{2}}$$

(+ sign for north-bound orbit and
- sign for south-bound orbit)

$$v_x^{cor} = \omega_{\oplus} r \cos i = 418.19$$
 m/s.

$$V_{x/base} = V_{s/c} - v_x^{cor}$$

= 7.545 km/s - 418.19 m/s
= 7.027 km/s

Measurement uncertainties.

- Ion concentration (density). $\Delta N/N = 0.285\%$ in one count error.
- V_y and V_z (cross-track component) from IDM. $\Delta V = 12.5$ m/s from 0.1° error in deflection angle.
- V_x (ram velocity) from RPA. Largest uncertainty up to 5% based on reference velocity of $V_{x/base}$, that is ±350 m/s in uncertainty.
 - Another uncertainty is spacecraft potential.

$$\phi_f \propto \frac{KT_e}{e}$$

Systematic Bias in Measured V_y and V_z .

- Take V_z between $\pm 5^\circ$ in dip latitude and plot V_z against local-time for one season of data with $K_p < 3$.
 - Average of V_z for all local-time

 $\overline{V_z} = 0$. If not, this is the system bias.

- $V_{z/bais} = 91.238, 70.977, 58.552, 54.820,$ 33.493, 43.146, 39.683, 36.607, 31.967, 39.936, 28.111, 20.849, 15.314, 29.546, 15.589, 10.487, 15.948, 20.641, 17.992, 18.057, 15.855, 32.573 m/sfor Spring, Summer, Autumn and Winter of 1999, 2000, 2001, 2002, 2003, and 2004, respectively.
- Swap the operation between +YDM and -YDM.
 - Compare the performance between the two Drift Meters.

•
$$V_{y/bias} = V_{z/bias} - 46$$
 m/s.

Measurements of geophysical quantities on Earth rotation coordinate system (as observed by a ground experiment).

- Use IGRF (International Geomagnetic Reference Model) to obtain *B* field at ROCSAT location.
- Remove V_{y}^{cor} and biases of V_{y} and V_{z} .
- Remove V_{ram} in V_x due to spacecraft motion.
- Project the resultant V_x , V_y , and V_z in *B* coordinate to obtain V_{\perp}^{M} (radial), V_{\perp}^{Z} (zonal), and V_{\parallel} (parallel) components of flow velocity.

IPEI LV_1 Data Quick-Look Display 00/008(01/08) Page: 1

Important Notes on Accuracy of V_{\perp}^{M} (radial), V_{\perp}^{Z} (zonal), and V_{\parallel} (parallel) components.

- Uncertainty of ± 350 m/s in V_x has been introduced in all geophysical flow components.
- V_{\perp}^{M} in low latitude is almost identical to (-V_z). No V_x is included so that it is very reliable.
- Uncertainty from V_x has been introduced in V_{\perp}^Z and V_{\parallel} .
- V_{\perp}^{Z} and V_{\parallel} can be used to study the relative change in flow velocity due to geophysical variations. But can not be used to study the long-term behavior of the flow velocity because the result may be biased by the uncertainty in V_x .